Cleanroom

Typically used in manufacturing or scientific research, a cleanroom is a controlled environment that has a low level of pollutants such as dust, airborne microbes, aerosol particles, and chemical vapors. To be exact, a cleanroom has a controlled level of contamination that is specified by the number of particles per cubic meter at a specified particle size. The ambient air outside in a typical city environment contains 35,000,000 particles per cubic meter, 0.5 mm and larger in diameter, corresponding to an ISO 9 cleanroom which is at the lowest level of cleanroom standards.

Cleanroom Overview

Cleanrooms are used in practically every industry where small particles can adversely affect the manufacturing process. They vary in size and complexity, and are used extensively in industries such as semiconductor manufacturing, pharmaceuticals, biotech, medical device and life sciences, as well as critical process manufacturing common in aerospace, optics, military and Department of Energy.

A cleanroom is any given contained space where provisions are made to reduce particulate contamination and control other environmental parameters such as temperature, humidity and pressure. The key component is the High Efficiency Particulate Air (HEPA) filter that is used to trap particles that are 0.3 micron and larger in size. All of the air delivered to a cleanroom passes through HEPA filters, and in some cases where stringent cleanliness performance is necessary; Ultra Low Particulate Air (ULPA) filters are used.

Personnel selected to work in cleanrooms undergo extensive training in contamination control theory. They enter and exit the cleanroom through airlocks, air showers and/or gowning rooms, and they must wear special clothing designed to trap contaminants that are naturally generated by skin and the body.

Depending on the room classification or function, personnel gowning may be as limited as lab coats and hairnets, or as extensive as fully enveloped in multiple layered bunny suits with self-contained breathing apparatus.
Cleanroom clothing is used to prevent substances from being released off the wearer’s body and contaminating the environment. The cleanroom clothing itself must not release particles or fibers to prevent contamination of the environment by personnel. This type of personnel contamination can degrade product performance in the semiconductor and pharmaceutical industries and it can cause cross-infection between medical staff and patients in the healthcare industry for example.

Cleanroom garments include boots, shoes, aprons, beard covers, bouffant caps, coveralls, face masks, frocks/lab coats, gowns, glove and finger cots, hairnets, hoods, sleeves and shoe covers. The type of cleanroom garments used should reflect the cleanroom and product specifications. Low-level cleanrooms may only require special shoes having completely smooth soles that do not track in dust or dirt. However, shoe bottoms must not create slipping hazards since safety always takes precedence. A cleanroom suit is usually required for entering a cleanroom. Class 10,000 cleanrooms may use simple smocks, head covers, and booties. For Class 10 cleanrooms, careful gown wearing procedures with a zipped cover all, boots, gloves and complete respirator enclosure are required.

Cleanroom Air Flow Principles

Cleanrooms maintain particulate-free air through the use of either HEPA or ULPA filters employing laminar or turbulent air flow principles. Laminar, or unidirectional, air flow systems direct filtered air downward in a constant stream. Laminar air flow systems are typically employed across 100% of the ceiling to maintain constant, unidirectional flow. Laminar flow criteria is generally stated in portable work stations (LF hoods), and is mandated in ISO-1 through ISO-4 classified cleanrooms.

Proper cleanroom design encompasses the entire air distribution system, including provisions for adequate, downstream air returns. In vertical flow rooms, this means the use of low wall air returns around the perimeter of the zone. In horizontal flow applications, it requires the use of air returns at the downstream boundary of the process. The use of ceiling mounted air returns is contradictory to proper cleanroom system design.

Utility System Qualification for the Pharmaceutical Industry

Pharmaceutical equipment manufacturing is a highly regulated industry. Given the stress on product quality and the widespread impact of substandard production on public health and safety, utility system qualification is a critical step that companies must take towards ensuring that all their products comply with federal laws and regulations.

In pharmaceuticals, critical utilities like water and HVAC (Heating, Ventilation and Air Conditioning) systems form the backbone of the manufacturing process. As a result, these are treated, as products that need to satisfy FDA regulatory requirements and pharmaceutical manufacturing standards, just like raw materials and other equipment used in the industry.

The primary use of a utility system is to help pharmaceutical companies check the quality and safety of their products and to ensure they comply with the laws and statutes in the FDA dossier. Without meeting these requirements, a product may fail to be cleared for marketing.

To pass inspection, utilities must pass a string of qualitative and quantitative specifications. Different utility systems have different quality and standard criteria, designed on the basis of inputs from relevant departments and organizations as well as manufacturing and engineering provisions.

When a validation program is set in place for utility systems used in pharmaceutical, critical utilities should be first on the list. It’s important to focus on the design, qualification and monitoring of each utility system used in pharmaceutical or biotech companies, so their end product fulfills all pharmaceutical quality standards.

Utility system qualification is designed to ensure that utilities in use conform to health and safety regulations, as well as pharmaceutical manufacturing standards and cGMP guidelines.

Current good manufacturing practices (cGMPs) are FDA guidelines that check the design, control and monitoring of manufacturing facilities and processes. To comply with cGMP regulations, drugs and medicinal products need to be of the right quality, strength and purity, by way of adequately controlled and monitored manufacturing operations.

Steps in utility system qualification include implementing strong operating procedures, establishing extensive quality control systems, procuring a consistent quality of raw material supplies and maintaining dependable testing labs.

If such a broad control system is implemented in a pharmaceutical facility, it can help to control instances of mix-ups, contamination, errors, defects and deviations during the manufacturing process. Such pharmaceutical products are better able to meet public health and safety laws established by the FDA.

Pharmaceutical cGMP guidelines are flexible enough that all manufacturers are free to decide how to apply FDA controls in ways that fits their unique requirements. They can make use of a variety of processing methods, testing procedures and scientific designs to adapt their manufacturing processes to meet the laws.

Because of the flexibility of these laws, companies can use innovative approaches and sophisticated technology to implement a system of continual improvement in order to achievement a consistent quality of pharmaceutical supplies.

All pharmaceutical manufacturing facilities need to adhere strictly to FDA-approved regulations. There is a lot of stress on the compliance of facility design with cGMP regulations as well as the various procedures associated with pharmaceutical production, so drugs are manufactured under conditions that meet FDA approval.

Failure to meet FDA regulations can result in responsive action by the authorities against the product or the responsible facility, depending upon the seriousness of non-compliance. The company may have to recall the product under orders of the FDA, to ensure it does not cause additional harm or risk to the public.

cGMP requirements can be useful in ensuring the efficacy, quality and safety of pharmaceutical products by making sure facilities are in good operating condition, with sufficiently calibrated and well-maintained equipment, trained and experienced staff and reliable and efficient processes.

While a utility system cannot affect product quality on its own, it forms an integral part of the manufacturing process. Panorama helps you set up validation processes as per your needs.

Automated manufacturing Practice

Good Automated Manufacturing Practice for Pharmaceutical Industries

The Good Automated Manufacturing Practice (GAMP) Forum was founded in 1991 by pharmaceutical industry professionals in the United Kingdom to address the industry’s need to improve comprehension and evolving expectations of regulatory agencies in Europe. The organization also sought to promote understanding of how computer systems validation should be conducted in the pharmaceutical industry.

GAMP rapidly became influential throughout countries as the quality of its work was recognized internationally. Over time, GAMP has become the acknowledged expert body for addressing issues of computer system validation.

GAMP’s guidance approach defines a set of industry best practices to enable compliance to all current regulatory expectations. More than simply a strict compliance standard, GAMP is a guideline for life sciences companies to use for their own quality procedures. As a result, it can be tailored to a number of computer system types.

Computer system validation following GAMP guidelines requires users and suppliers to work together so that responsibilities regarding the validation process are understood. For users, GAMP provides a documented assurance that a system is appropriate for the intended use before it goes live. Suppliers can use GAMP to test for avoidable defects in the supplied system to ensure quality product leaves the facility.

The GAMP framework addresses how systems are validated and documented. Companies do not need to follow the same set of procedures and processes of a GAMP framework to achieve validation and qualification levels that satisfy inspectors. Instead, GAMP examines the systems development lifecycle of an automated system to identify issues of validation, compliance and documentation.

As a voluntary program, GAMP offers both challenges and benefits. The top three challenges in implementing GAMP are establishing procedural control, handling management and change control, and finding an acceptable standard among the existing variations.

Establishing procedural control is a challenge in using GAMP guidelines because new frameworks may be necessary to gauge the validity of systems. Most pharmaceutical companies have already established a baseline that adheres to standards and regulations that exist today, but they may not have a procedure to check the processes that are in place. This could cause resistance among software developers who may prefer not to work within the confines of specifications and procedures developed by others. Specifications and procedures developed by previous software developers may hinder ways to adjust computer systems, but varying interpretations of GAMP guidelines allow for multiple solutions.

Another hurdle is change control. In the development or modification of computer systems, companies with even the highest of standards can suffer setbacks along the systems development lifecycle. Sometimes minor tweaks by the software programmer may cause breakdowns after validation changes have been implemented. Internal processes and procedures must be established to guard against these occurrences.

Effective documentation management is fundamental for compliance. Any inaccuracies or missing information renders all other efforts moot. Moreover, implementing a formal document management application may be cost-prohibitive for some organizations. Some companies simply use what’s in the GAMP checklists to evaluate their systems. Today’s environment demands a thorough process to show validation.

The benefits of utilizing the GAMP approach for both users and suppliers include:

  • Improved understanding of the subject with the introduction of common terminology
  • Reduced cost and time to achieve compliant systems
  • Reduced time and resources for revalidation or regression testing and remediation
  • Reduced cost of qualification
  • Enhanced compliance with regulatory expectations
  • Established responsibility for all involved parties

When the FDA introduced its current Good Manufacturing Practices (cGMP) for the 21st century initiative, companies shifted their approach to validation. Formerly, they only had to heed a set of rules that accounted for every piece of equipment that was used. Now they can take a risk-based approach to validation by addressing safety, efficacy and quality in the product considerations. This enables the industry to place its investments where it makes the most sense. The onus ultimately falls on manufacturers to accept greater responsibility to validate their systems having the attendant benefits of cost and time to market savings.

GAMP helps provide a quality product from the manufacturer, and helps to limit the pharmaceutical industry’s culpability by ensuring proper steps were placed to deliver a quality product through validated systems. By incorporating input from the full spectrum of stakeholders, fine-tuning and further development of the process is geared towards benefiting the life sciences industry and the general consumer market.

The tools exist for companies to take the steps needed to reap the benefits of validation. Understanding an early adoption of GAMP can increase a company’s competitive position, especially with the implementation of new technologies. By staying aware of technological innovations, companies are able to increase efficiency, minimize risks and reduce costs.

Waste Water Treatment Plant

Wastewater Treatment Process

Wastewater treatment is the process of converting wastewater – water that is no longer suitable for use – into water that can be discharged back into the environment. Its treatment aims at reducing the contaminants to acceptable levels to make the water safe for discharge back into the environment.

There are two wastewater treatment plants namely chemical or physical treatment plant, and biological wastewater treatment plant. Biological waste treatment plants use biological matter and bacteria to break down waste matter. Physical waste treatment plants use chemical reactions as well as physical processes to treat wastewater. Biological treatment systems are ideal for treating wastewater from households and business premises. Physical wastewater treatment plants are mostly used to treat wastewater from industries, factories and manufacturing firms. This is because most of the wastewater from these industries contains chemicals and other toxins that can largely harm the environment.

The wastewater treatment is as follows:

  1. Wastewater Collection

This is the first step in wastewater treatment process. Collection systems are put in place by municipal administration to ensure that all the wastewater is collected and directed to a central point. This water is then directed to a treatment plant using underground drainage systems or by exhauster tracks owned and operated by business people.

  1. Odour Control

At the treatment plant, odour control is very important. Wastewater contains a lot of dirty substances that cause a foul smell over time. To ensure that the surrounding areas are free of the foul smell, odor treatment processes are initiated at the treatment plant. All odor sources are contained and treated using chemicals to neutralize the foul smell producing elements. It is the first wastewater treatment plant process and it’s very important.

  1. Screening

This is the next step in wastewater treatment process. Screening involves the removal of large objects that in one way or another may damage the equipment. Failure to observe this step, results in constant machine and equipment problems. Specially designed equipment is used to get rid of grit that is usually washed down into the sewer lines by rainwater. The solid wastes removed from the wastewater are then transported and disposed off in landfills.

  1. Primary Treatment

This process involves the separation of macrobiotic solid matter from the wastewater. Primary treatment is done by pouring the wastewater into big tanks for the solid matter to settle at the surface of the tanks. The sludge, the solid waste that settles at the surface of the tanks, is removed by large scrappers and is pushed to the center of the cylindrical tanks and later pumped out of the tanks for further treatment. The remaining water is then pumped for secondary treatment.

  1. Secondary Treatment

Also known as the activated sludge process, the secondary treatment stage involves adding seed sludge to the wastewater to ensure that is broken down further. Air is first pumped into huge aeration tanks which mix the wastewater with the seed sludge which is basically small amount of sludge, which fuels the growth of bacteria that uses oxygen and the growth of other small microorganisms that consume the remaining organic matter. This process leads to the production of large particles that settle down at the bottom of the huge tanks. The wastewater passes through the large tanks for a period of 3-6 hours.

  1. Bio-solids handling

The solid matter that settle out after the primary and secondary treatment stages are directed to digesters. The digesters are heated at room temperature. The solid wastes are then treated for a month where they undergo anaerobic digestion. During this process, methane gases are produced and there is a formation of nutrient rich bio-solids that are recycled and dewatered into local firms. The methane gas formed is usually used as a source of energy at the treatment plants. It can be used to produce electricity in engines or to simply drive plant equipment. This gas can also be used in boilers to generate heat for digesters.

  1. Tertiary treatment

This stage is similar to the one used by drinking water treatment plants which clean raw water for drinking purposes. The tertiary treatment stage has the ability to remove up to 99 percent of the impurities from the wastewater. This produces effluent water that is close to drinking water quality. Unfortunately, this process tends to be a bit expensive, as it requires special equipment, well trained and highly skilled equipment operators, chemicals and a steady energy supply. All these are not readily available.

  1. Disinfection

After the primary treatment stage and the secondary treatment process, there are still some diseases causing organisms in the remaining treated wastewater. To eliminate them, the wastewater must be disinfected for at least 20-25 minutes in tanks that contain a mixture of chlorine and sodium hypochlorite. The disinfection process is an integral part of the treatment process because it guards the health of the animals and the local people who use the water for other purposes. The effluent (treated waste water) is later released into the environment through the local waterways.

  1. Sludge Treatment

The sludge that is produced and collected during the primary and secondary treatment processes requires concentration and thickening to enable further processing. It is put into thickening tanks that allow it to settle down and later separates from the water. This process can take up to 24 hours. The remaining water is collected and sent back to the huge aeration tanks for further treatment. The sludge is then treated and sent back into the environment and can be used for agricultural use.

Wastewater treatment has a number of benefits. For example, wastewater treatment ensures that the environment is kept clean, there is no water pollution, makes use of the most important natural resource; water, the treated water can be used for cooling machines in factories and industries, prevents the outbreak of waterborne diseases and most importantly, it ensures that there is adequate water for other purposes like irrigation.

In summary, wastewater treatment process is one of the most important environmental conservation processes that should be encouraged worldwide. Most wastewater treatment plants treat wastewater from homes and business places. Industrial plant, refineries and manufacturing plants wastewater is usually treated at the onsite facilities. These facilities are designed to ensure that the wastewater is treated before it can be released to the local environment.

What is Piping and Instrumentation Diagram (P&ID)?

A piping and instrumentation diagram (P&ID) is a drawing in the process industry. A P&ID shows all piping, including the “physical sequence of branches, reducers, valves, equipment, instrumentation and control interlocks.” A P&ID is used to operate the process system, since it shows the piping of the process flow along with the installed equipment and instrumentation.

P & IDs play a key role in maintaining and modifying the process they describe, because it is important to demonstrate the physical sequence of equipment and systems, including how these systems connect. In terms of processing facilities, a P&ID is a visual representation of key piping and instrument details, control and shutdown schemes, safety and regulatory requirements, and basic start-up and operational information.

A P&ID should include the following:

  • Instrumentation and designations
  • Mechanical equipment with names and numbers
  • All valves and their identifications
  • Process piping, sizes, and identification
  • Vents, drains, special fittings, sampling lines, reducers, increasers, and swaggers
  • Permanent start-up and flush lines
  • Flow directions
  • Interconnections references
  • Control inputs and outputs, interlocks
  • Interfaces for class changes
  • Computer control system
  • Identification of components and subsystems delivered by the process

A P&ID should NOT include the following:

  • Instrument root valves
  • Control relays
  • Manual switches
  • Primary instrument tubing and valves
  • Pressure temperature and flow data
  • Elbow, tees and similar standard fittings
  • Extensive explanatory notes

A P&ID involves various symbols to represent all of the included parts, components, and information. Their symbology is defined on separate drawings referred to as “lead sheets” or “legend sheets.” Lead sheets should be customized to each company’s process plants, though in general, the P&IDs are based on a core set of standard symbols and notations. The most important part of the lead sheets is that they are organized logically so that it is possible to easily locate the symbols and tags. While it’s a good practice to have lead sheets for the major equipment in a factory, it may not be necessary because this major equipment already should be tagged and named with general specifications for identification purposes.

Letter and number combinations appear inside each graphical element and letter combinations are defined by the ISA standard. Numbers are user assigned and schemes vary. While some companies use sequential numbering, others tie the instrument number to the process line number, and still others adopt unique and sometimes unusual numbering systems. The first letter defines the measured or initiating variables such as Analysis (A), Flow (F), Temperature (T), etc. with succeeding letters defining readout, passive, or output functions such as Indicator (I), Recorder (R), Transmitter (T), etc.

Below are some piping and instrumentation diagram symbols with letters.


Because a P&ID contains such important information, it is critical to the workings of the process industry that the process plants apply tags or labels to keep track of all of the equipment, piping, valves, devices, and more. Those labels must match the symbology and should not fail, so that the plant’s operations run smoothly and efficiently. That’s why the unique identifiers involved in the P&ID, tagging, and labeling process are critical.

The P&ID and tags ensure that even collections of similar objects have unique tags so that identical valves, pumps, instruments, etc., can be uniquely identified
The P&ID and tags make it possible to assemble the process plant in a structured manner so that additions, deletions, changes, etc., are possible from a whole-unit scale down to a single valve on a pipe at any location.

The P&ID and tags contain scores of metadata that provides, or links to, more details including specifications, materials of construction, data sheets, etc.
Best Practices for Tagging Equipment When Considering P&ID.

Using a numeric-only system for tagging equipment is the best way for process industries to avoid the problems with labeling by abbreviated names. Structured tag systems are more intuitive for every team that deals with the equipment, including developers, operators, and maintenance. The equipment tag format should be a series of three numbers, beginning with an area number, followed by an equipment type code, and then ending with a unique sequence number.

Area numbers represent an area that may be determined by the physical, geographical, or logical grouping location by the plant site
Equipment types are fairly straightforward, but if equipment has multiple functions, users should determine how to select the most suitable equipment type code.

Sequence numbering is the consecutive numbering of similar equipment in any given area, and it’s important to being the sequence at 01 so that all equipment can have it’s own sequence number.

Validation

Validation Protocols for Pharmaceutical Industries

For pharmaceutical industries, product quality is paramount. Minor inconsistencies can lead to major disasters. To maintain quality assurance, consistency and risk assessment, industries conduct a validation of processes and equipment. A validation is a documented evidence of the consistency of processes and equipment. Design Qualification (DQ), Installation Qualification (IQ), Operational Qualification (OQ) and Performance Qualification (PQ) are an essential part of quality assurance through equipment validation.

DQ IQ OQ PQ protocols are ways of establishing that the equipment which is being used or installed will offer a high degree of quality assurance, so that manufacturing processes will consistently produce products that meet predetermined quality requirements.

Design Qualification (DQ)

Design qualification is a verification process on the design to meet particular requirements relating to the quality of manufacturing and pharmaceutical practices. It is important to take these procedures into consideration and follow them keenly. Along with Process Validation, pharmaceutical manufacturers must conduct Design Qualification during the initial stages. For DQ to be considered whole, other qualifications i.e. IQ, OQ and PQ need to be implemented on each instrument and the system as a whole.

DQ allows manufacturers to make corrections and changes reducing costs and avoiding delays. Changes made to a DQ should be documented which makes DQ on the finalized design easier and less prone to errors. By the use of a design validation protocol it is possible to determine whether the equipment or product will deliver its full functionality and conform to the requirements of the validation master plan.

Installation Qualification (IQ)

Any new equipment is first validated to check if it is capable of producing the desired results through Design Qualification, but its performance in a real-world scenario depends on the installation procedure that follows. Installation Qualification (IQ) verifies that the instrument or equipment being qualified, as well as its sub-systems and any ancillary systems, have been delivered, installed and configured in accordance with the manufacturer’s specifications or installation checklist. All procedures to do with maintenance, cleaning and calibration are drawn at the installation stage. It also details a list of all the continued Good Manufacturing Procedures (cGMP) requirements that are applicable in the installation qualification.

Conformance with cGMP’s requires, that whatever approach is used, it is fully documented in the individual Validation Plan. The IQ should not start with the Factory Acceptance Testing (FAT) or Commissioning tasks, but it should start before these tasks are completed; enabling the validation team to witness and document the final FAT and commissioning testing. The integration of these activities greatly reduces the costly and time consuming replication of unnecessary retesting.

These requirements must all be satisfied before the IQ can be completed and the qualification process is allowed to progress to the execution of the OQ.

Operational Qualification (OQ)

Operational Qualification is an essential process during the development of equipment required in the pharmaceutical industry. OQ is a series of tests which of tests which ensure the equipment and its sub-systems will operate within their specified limits consistently and dependably. Equipment may also be tested during OQ for qualities such as using an expected and acceptable amount of power or maintaining a certain temperature for a predetermined period of time. OQ follows a specific procedure to maintain thoroughness of the tests and accuracy of the results. The protocol must be detailed and easily replicated so that equipment can be tested multiple times using different testers. This ensures that the results are reliable and do not vary from tester to tester. OQ is an important step to develop safe and effective equipment.

Performance Qualification (PQ)

PQ is the final step in qualification processes for equipment, and this step involves verifying and documenting that the equipment is working reproducibly within a specified working range. Rather than testing each instrument individually, they are all tested together as part of a partial or overall process. Before the qualification begins, a detailed test plan is created, based on the process description.

Process Performance Qualification (PPQ) protocol is a vital part of process validation and qualification, which is used to ensure ongoing product quality by documenting performance over a period of time for a certain process.

Equipment qualification through DQ IQ OQ PQ practices is a part of Good Manufacturing Practice (GMP), through which manufacturers and laboratories can ensure that their equipment delivers consistent quality. It reduces the margin for errors, so the product quality can be maintained within industry standards or regulatory authority requirements. When qualification of equipment is not needed very frequently, performing it in-house might not be feasible, so smaller laboratories might benefit from scheduling external equipment validation services on a regular basis instead.

Calibration for Pharmaceutical Industries

The pharmaceutical sector is governed by regulatory norms to ensure that quality standards are met for products in line with pharmaceutical cGMP guidelines. The FDA takes food and pharma production very seriously, which is why these guidelines are in place. Calibration is one such process wherein an instrument or a utility system is adjusted so that its readings are adherent to the defined guidelines. It is usually performed as per approved written procedures.
What is Equipment Calibration?
Equipment calibration is important as equipment is often used to gather critical data and hence calibrating them and keeping them up to date becomes mandatory. This process is carried out regularly since equipment used in pharmaceutical manufacturing depending on its functionality is subjected to a lot of wear and tear.Calibration is usually done component-wise to ensure accuracy of the operating equipment as per defined pharmaceutical cGMP.
Types of Calibration
Calibration types are defined as per the parameter which is crucial for a certain process. The classification is largely done on the basis of the type of reading, and common types include:
Pressure Calibration– This method calibrates pressure readings within barometers, transmitters, test gauges and other kinds of equipment commonly used in manufacturing setups.
Temperature Calibration– Calibration is done based on temperature readings, in simulation of a real-time environment. The equipment in this category includes furnaces, weather stations, bio repositories, thermistors, etc.
Flow Calibration– The calibration which is carried out routinely for flow meters that check product quantity or energy functions in processes. Some of the equipment which requires flow calibration includes flowmeters, rotameters and turbine meters.
Pipette Calibration– Pipettes are used in laboratories to measure liquids in small, precise quantities. This calibration method is utilized in labs that make frequent use of pipettes, and is a fairly stringent process since the degree of precision required is very high.
Electrical Calibration– This particular method is used for checking electrical equipment. The accreditation standards are set as per UKAS outlines, since these are considered the most accurate set of standards for electrical calibration.
Mechanical Calibration– Mechanical calibration checks for the accuracy of various measurements such as torque, mass, force, angle and vibration. All these elements are checked in a temperature-controlled facility, since variations in temperature can adversely impact the calibration process.
Since these instruments are used in real-time environments, they are subject to frequent wear and tear. However, they are used in processes that require a lot of precision in terms of data gathering and measured quantities.Therefore, in order to maintain the accuracy of the process and the measurements taken by equipment, frequent calibration is required.

The frequency with which equipment is to be calibrated depends on various factors such as:

  • The importance of the measurements for which instruments are used
  • The defined standards of the equipment manufacturer to adhere to the pharmaceutical CGMP guidelines.
  • The degree of risk involved in the process for which that equipment is being used
  • The degree of precision required from the equipment and the accuracy with which data is to be gathered from the equipment.
  • The extent to which the equipment is stable. This is evaluated from the historical data on the stability of the equipment

Calibration is a mandatory process in the pharmaceutical space considering the need for reproducible product quality. Lack of precision can lead to huge repercussions and penalties. Calibration forms an essential part of the quality assurance and validation process in the pharmaceutical industry.

Water Audit

An Introduction to Water Audit in Industries

Water has been an over utilized commodity in the process industry due to its low cost. However, due to increasing environmental regulations and high expectations of environmental performance, water conservation has been on the agenda for industries. Conducting a water use efficiency audit is the first step in determining the most cost effective water conservation projects.
Water audit is the measure of impact the organization has on water resources. Determining an organizations’ water consumption and the amount of water lost from a distribution system is the main aim of Water Audit. Loss of water may be due to leakage and other reasons such as pumping inefficiency, unauthorized or illegal withdrawals from the systems and the cost of such losses to the organization.
Water audit creates a detailed profile of the water distribution system. It maps water intensive units, thus facilitating effective management of water resources with improved reliability. It diagnoses the problems faced to recommend appropriate solutions. It is also an effective tool for realistic understanding and assessment of the present performance level and efficiency of the water management service and the compliance of such a system for future expansion.
Standards and guidelines
Since water is seen as a free commodity there are no specific guidelines available for the same. The Central Water Commission has taken the role to bring out General Guidelines for Water Audit which covers the three main sectors of water use i.e. irrigation, domestic and industrial. These guidelines aim to introduce, standardize and popularize the water audit system for conservation of water in all sectors and improve the water use efficiency.
Categories of Water Audit
Based on the extent of water consumption, Water Audit can be divided into four categories.

  • Large Water users:These users covers large Industries, Agriculture Municipalities and Metros with consumption more than 15 million litres per day.
  • Medium Water Users: These users covers Industrial clusters, Medium Industries and township with demand ranging from 3 million litres per day to 15 million litres per day.
  • Small Water Users: Large Hotels, IT Parks, Theme Parks, Industrial and Private Township with demand of 0.5 million litres per dayto 3 million litres per day.
  • Tiny water Users: All other users with consumption less than 0.5 million litres per daysuch as Commercial complexes, Government Offices/Buildings, Builders, Colonies etc.

Benefits of water audit
Water audit improves the distribution system, spots problems and risk areas and therefore builds a better understanding of water handling system right from source to disposal/treatment. Leak detection programs help in minimizing leakages and tackling small problems before they become major ones. These programs have the potential to-

  • Reduce water losses
  • Improve financial performance
  • Improve reliability of supply system
  • Enhance knowledge of the distribution system
  • Increase efficiency in the use of existing supplies
  • Create Better safeguard to public health and property
  • Improve public relations
  • Reduce legal liability, and reduced disruption.

Efficient use of water can be a part of the environmental strategy of a business, just like reducing the carbon footprint. Analyzing risk and opportunities associated with water allow organization to assess water related risks and opportunities. Water audit is qualitative and quantitative analysis of water consumption and it also help to assess significant social and environmental impacts associated with water scarcity.

Temperature Mapping for Pharmaceutical Industry

Temperature mapping is important for verifying the efficacy of temperature controlled storage systems such as cool rooms, fridges and warehouses. It is vital for businesses that work with temperature sensitive products such as pharmaceuticals or warehouses.

The process of mapping outlines the differences and changes in temperature that occur within a single temperature controlled system. This is due to influences like opening doors, proximity to cooling fans, personnel movement, and the quantity of products being stored at any given time. Temperature mapping locates the points of greatest temperature fluctuation and difference then analyses the causes of these. Conditions are created to verify that a system maintains the correct temperature in all situations when influenced by external factors such as weather and internal factors such as airflow restrictions and the operation of the Heating, Ventilation and Air Conditioning systems. The effects in difference of temperature are calculated to ensure the systems meet industry standards.

The temperature of different spaces within cooling rooms, industrial fridges and other controlled temperature environments can vary by up to 10°C. Generally, the central space within a chamber maintains constant temperature, however the corners and areas surrounding the fans will fluctuate. External seasonal weather must also be taken into account especially for warehouses.

Temperature mapping is important for businesses and organisations dealing with temperature sensitive products, like biochemical products such as medications and vaccines. Verifying that the refrigeration systems maintain an acceptable temperature level for each specific product at all times is what temperature mapping is all about, and this is supported using ongoing monitoring systems.

Once mapping has established where temperature variation points lie within the control system then monitoring can be installed. It is important to re check any back up systems to be sure that the chambers will work in other circumstances.

Different mapping equipment gives different results. It is important to ensure that the equipment being used has sufficient accuracy ratings to give reliable data. For example, better equipment will provide readings that are accurate within plus or minus 0.3°C, whereas budget equipment may only have accuracy ratings of within 2.0°C. For products that must be stored within a limited temperature range, this budget equipment cannot provide sufficiently specific temperature data.

Warehouses must have information regarding the building’s external conditions, as it is vital for effective mapping and monitoring. Warehouses are generally mapped for a full year to ensure all external conditions are accounted for in the data. This also helps to determine placement of monitoring systems due to influence of external conditions.

Temperature-controlled rooms such as fridges or cold rooms can be mapped once as their external environment is controlled. However, it is advisable to make sure that other external forces that could change their temperatures significantly do not heavily influence the HVAC systems of these buildings or environments. The mapping in warehouses should take into account the fluctuation in the warehouse temperatures and conduct the tests during its most extreme levels.

Load testing is important aspect of the temperature mapping process. It investigates how expected product levels interact with individual temperature controlled chambers. This testing takes into account whether the product will arrive in the required condition or if cooling is necessary. Testing should verify whether the chamber could cope with the maximum specified load arriving all at once to then be cooled. If it can operate properly in this situation, as well as operating effectively at full capacity, the chamber can be considered sufficiently load tested. It is also advisable to test the system’s performance by simulating failures, to ascertain whether the system could be used even while experiencing some equipment failures.

Once the mapping process has been completed, sensors should be installed to allow for continued surveillance of the areas that have been identified as being most influenced by temperature change. The stable areas should be monitored to help with any troubleshooting.

Monitoring systems should be planned and documented according to the scientific rationales shown by the temperature mapping procedure. This development strategy should then be reviewed and approved by the system owners as well as by an independent quality unit before being installed. Sensors should be placed around the products, around major potential temperature influences such as doors and cooling fans, and at different heights, especially in larger chambers.

Sensor equipment can be split into zones according to the area affected by similar influences. For example, in a square or rectangular chamber, the zones in corners away from doors will behave much the same as each other, as will the zones adjacent to doors or fans. If the monitoring devices are zoned, data can be compared to provide overall information on how the system usually functions.

To summarize, temperature mapping provides information on warmer and colder areas within temperature-controlled environments. They supply details on the overall operation of the systems. After temperature mapping a system, monitoring equipment can be installed to provide real-time feedback on system operations and its stability for product protection.

HAZOP Analysis For Chemical Process Industries

“An ounce of prevention is worth a pound of cure.” As this old saying goes, safety should be an important element in every industry. Safety covers hazard identification, risk assessment and accident prevention. Safety should always come first and remain so despite of costs. Good design and forethought can often bring increased safety at less cost.

Operators of volatile plants must implement measures to ensure that their plants are operated and maintained in a safe manner. In the chemical process industry there are chances of a number of potential hazards. A hazard has the potential of causing an injury or damage to the plant as well as the working members. Raw material and intermediate toxicity and reactivity, energy release from chemical reactions, hightemperatures, high pressures, quantity of material used etc. are some of the hazards that can cause damage in a chemical industry plant.

HAZOP refers to Hazard and Operability studies. HAZOP is a systematic technique for examining potential hazards in the system. With HAZOP, the process is broken down into steps where every parameter is considered to see what could go wrong and where. This is the most common hazard analysis method for complex systems. It can be used to identify problems even during the early stages of project development, as well as identifying potential hazards in existing systems.

An important benefit of the HAZOP study is resulting knowledge that can be of great assistance in determining appropriate remedial measures. There are four steps to the HAZOP process:

  • Forming a HAZOP team:
    A multidisciplinary team is formed under the guidance of a leader. The team includes a variety of expertise such as operations, maintenance, instrumentation, engineering/process design, and other specialists as needed. The fundamental requirement is an understanding of the system and willingness to consider various parameters at each step of the process.
  • Identifying the elements of the system:
    The team must create a strategic plan for the entire process identifying individual steps and elements. This typically involves using a plant model as a guide for examining every section and component of the process. For each element, the team will identify the planned operating parameters of the system at that point: flow rate, pressure, temperature, vibration, and so on.
  • Considering possible variations in operating parameters:
    The team must be open to the idea of considering every possible variation to the parameters identified. Every deviation should be studied and potential hazards to be identified for each scenario.
  • Identifying any hazards or failure points:
    Once the team has identified potential hazards, they must estimate the impact of that failure. Existing systems should be evaluated and their ability to handle deviations in the future must be taken into consideration.

The overall aims to which any HAZOP Study should be addressed are:

  • To identify all deviations from the way the design intended to work, their causes and all the hazards and operability problems associated with these deviations.
  • To decide whether action is required to control the hazard or the operability problem, and if so, to identify the ways in which the problems can be solved.
  • To identify cases where a decision cannot be taken immediately and to decide on what information or action is required.
  • To ensure actions decided are followed through.

HAZOP studies can be implemented for new facilities or existing facilities or processes. When a HAZOP study is performed in the planning stage of a new process, completing the study means that all potential causes of failure will be identified.Whereas in existing facilities,instead of one assessment, the results will be released as each problem is identified and solutions are created.