Design For Safety Equipment and design

Design for safety

System safety

System Safety is the application of engineering and management principles, criteria, and techniques to optimize all aspects of safety within the constraints of operational effectiveness, time, and cost throughout all phases of the system life cycle. It is a planned, disciplined and systematic approach to preventing or reducing accidents throughout the lifecycle of a system

Primary concern is the management of risks through:

  • Risk identification, evaluation, elimination & control through analysis, design & management

History of system safety

Design Safety arose in the 1950s after dissatisfaction with the fly-fix-fly approach to safety. Design Safety was first adopted by the US Air Force. It led to the development of mil-std-882 Standard Practice for System Safety (v1 1960s). The basic concept of System was rather than assigning a safety engineer to demonstrate that a design is safe, safety considerations were to be integrated from the design phase of the project.

Founding principles

Safety should be designed in

  • Critical reviews of the system design identify hazards that can be controlled by modifying the design
  • Modifications are most readily accepted during the early stages of design, development, and test
  • Previous design deficiencies can be corrected to prevent their recurrence

Inherent safety requires both engineering and management techniques to control the hazards of a system

  • A safety program must be planned and implemented such that safety analyses are integrated with other factors that impact management decisions

Safety requirements must be consistent with other program or design requirements

  • The evolution of a system design is a series of tradeoffs among competing disciplines to optimize relative contributions
  • Safety competes with other disciplines; it does not override them

The main principles of Safe design are:

  • Inherent safety
  • Safety factors
  • Multiple independent safety barriers

Inherently safe design 

Inherent: belonging to the very nature of the person/thing (inseparable). It is recommended that Inherent safe design should be the first step in safety engineering. Change the process to eliminate hazards, rather than accepting the hazards and developing add-on features to control them, unlike engineered features, inherent safety cannot be compromised.

Minimize inherent dangers as far as possible by considering the following:

  • Potential hazards are excluded rather than just enclosed or managed
  • Replace dangerous substances or reactions by less dangerous ones (instead of encapsulating the process)
  • Use fireproof materials instead of flammable ones (better than using flammable materials but keeping temperatures low)
  • Perform reactions at low temperatures & pressures instead of building resistant vessels

Safety Factors

Factors of safety (FoS), also known as safety factor (SF), is a term describing the load carrying capacity of a system beyond the expected or actual loads. Essentially, the factor of safety is how much stronger the system is than it usually needs to be for an intended load. Safety factors are often calculated using detailed analysis because comprehensive testing is impractical on many projects, such as bridges and buildings, but the structure’s ability to carry load must be determined to a reasonable accuracy.

When the material used is under strength, factor of safety covers uncertainties in material strength. It covers poor workmanship. It also covers unexpected behavior of the structure and natural disasters. Stresses are produced which may be very high. Factor of safety may take care of these loads during construction. Presence of residual stresses and stress concentrations beyond the level theoretically expected.

Multiple Independent Safety Barriers

Safety barriers are arranged in chains. The aim is to make each barrier independent of its predecessors so that if the first fails, then the second is still intact, etc. Typically, the first barriers are measures to prevent an accident, after which follow barriers that limit the consequences of an accident, and, finally, rescue services as the last resort.

The basic idea behind multiple barriers is that even if the first barrier is well constructed, it may fail, due to unforeseen reason, and that the second barrier should then provide protection. The major problem in the construction of safety barriers is how to make them as independent of each other as possible. If two or more barriers are sensitive to the same type of impact, then one and the same destructive force can get rid of all of them in one swoop.

These three principles of engineering safety – inherent safety, safety factors, and multiple barriers are quite different in nature, but they have one important trait in common. They all aim at protecting us not only against risks that can be assigned meaningful probability estimates, but also against dangers that cannot be probabilized, such as the possibility that some unforeseen even triggers a hazard that is seemingly under control. It remains, however, to investigate more in detail the principles underlying safety engineering and, not least, to clarify how they relate to other principles of engineering design.

 

 

Project manager having a meeting with employees

Project Management

Project Management Institute, Inc. (PMI) defines project management as “the application of knowledge, skills, tools and techniques to a broad range of activities in order to meet the requirements of a particular project.” Project management is the discipline of using established principles, procedures and policies to manage a project from conception through completion. It is often abbreviated as PM.

Project management oversees the planning, organizing and implementing of a project. A project is an undertaking with specific start and end parameters designed to produce a defined outcome, such as a new computer system. A project is different from ongoing processes, such as a governance program or an asset management program.

The project management plan is expected to effectively and efficiently guide all aspects of a project from start to finish, with the ideal goal of delivering the outcome on time and on budget. A project plan often begins with a project charter, and it is expected to identify potential challenges in advance and handle any roadblocks as they arise in order to keep the project on schedule.

The process of directing and controlling a project from start to finish may be further divided into 5 basic phases:

Project conception and initiation- An idea for a project will be carefully examined to determine whether or not it benefits the organization. During this phase, a decision making team will determine whether the project is feasible and whether they have the resources to take on the project.

Project definition and planning- A project plan, project charter and/or project scope may be put in writing, outlining the work to be performed. During this phase, a team should prioritize the project, calculate a budget and schedule, and determine what resources are needed.

Project launch or execution- Resources’ tasks are distributed and teams are informed of responsibilities. This is a good time to bring up important project related information.

Project performance and control- Project managers will compare project status and progress to the actual plan, as resources perform the scheduled work. During this phase, project managers may need to adjust schedules or do what is necessary to keep the project on track.

Project close- After project tasks are completed and the client has approved the outcome, an evaluation is necessary to highlight project success and/or learn from project history.

Projects and project management processes vary from industry to industry; however, these are more traditional elements of a project. The overarching goal is typically to offer a product, change a process or to solve a problem in order to benefit the organization.

Responsibilities of a project manager

Business leaders recognize project management as a specific function within the organization and hire individuals specifically trained in this discipline — i.e., project managers — to handle their organization’s project management needs.

Project managers can employ various methods and approaches to run projects, generally selecting the best approach based on the nature of the project, organizational needs and culture, the skills of those working on the projects, and other factors.

Managing a project involves multiple steps. Although the terminology for these steps varies, they often include:

  • Defining project goals;
  • Outlining the steps needed to achieve those goals;
  • Identifying the resources required to accomplish those steps;
  • Determining the budget and time required for each of the steps, as well as the project as a whole;
  • Overseeing the actual implementation and execution of the work; and
  • Delivering the finished outcome.

As part of a strong project management plan, project managers implement controls to assess performance and progress against the established schedule, budget and objectives laid out in the project management plan. This is often referred to as the project scope.

Because projects often require teams of workers who do not typically work together, effective project management requires strong communication and negotiation skills. Project managers also need to work closely with the multiple stakeholders who have interests in any given project, another area where strong communication and negotiation skills are essential.

Automated manufacturing Practice

Good Automated Manufacturing Practice for Pharmaceutical Industries

The Good Automated Manufacturing Practice (GAMP) Forum was founded in 1991 by pharmaceutical industry professionals in the United Kingdom to address the industry’s need to improve comprehension and evolving expectations of regulatory agencies in Europe. The organization also sought to promote understanding of how computer systems validation should be conducted in the pharmaceutical industry.

GAMP rapidly became influential throughout countries as the quality of its work was recognized internationally. Over time, GAMP has become the acknowledged expert body for addressing issues of computer system validation.

GAMP’s guidance approach defines a set of industry best practices to enable compliance to all current regulatory expectations. More than simply a strict compliance standard, GAMP is a guideline for life sciences companies to use for their own quality procedures. As a result, it can be tailored to a number of computer system types.

Computer system validation following GAMP guidelines requires users and suppliers to work together so that responsibilities regarding the validation process are understood. For users, GAMP provides a documented assurance that a system is appropriate for the intended use before it goes live. Suppliers can use GAMP to test for avoidable defects in the supplied system to ensure quality product leaves the facility.

The GAMP framework addresses how systems are validated and documented. Companies do not need to follow the same set of procedures and processes of a GAMP framework to achieve validation and qualification levels that satisfy inspectors. Instead, GAMP examines the systems development lifecycle of an automated system to identify issues of validation, compliance and documentation.

As a voluntary program, GAMP offers both challenges and benefits. The top three challenges in implementing GAMP are establishing procedural control, handling management and change control, and finding an acceptable standard among the existing variations.

Establishing procedural control is a challenge in using GAMP guidelines because new frameworks may be necessary to gauge the validity of systems. Most pharmaceutical companies have already established a baseline that adheres to standards and regulations that exist today, but they may not have a procedure to check the processes that are in place. This could cause resistance among software developers who may prefer not to work within the confines of specifications and procedures developed by others. Specifications and procedures developed by previous software developers may hinder ways to adjust computer systems, but varying interpretations of GAMP guidelines allow for multiple solutions.

Another hurdle is change control. In the development or modification of computer systems, companies with even the highest of standards can suffer setbacks along the systems development lifecycle. Sometimes minor tweaks by the software programmer may cause breakdowns after validation changes have been implemented. Internal processes and procedures must be established to guard against these occurrences.

Effective documentation management is fundamental for compliance. Any inaccuracies or missing information renders all other efforts moot. Moreover, implementing a formal document management application may be cost-prohibitive for some organizations. Some companies simply use what’s in the GAMP checklists to evaluate their systems. Today’s environment demands a thorough process to show validation.

The benefits of utilizing the GAMP approach for both users and suppliers include:

  • Improved understanding of the subject with the introduction of common terminology
  • Reduced cost and time to achieve compliant systems
  • Reduced time and resources for revalidation or regression testing and remediation
  • Reduced cost of qualification
  • Enhanced compliance with regulatory expectations
  • Established responsibility for all involved parties

When the FDA introduced its current Good Manufacturing Practices (cGMP) for the 21st century initiative, companies shifted their approach to validation. Formerly, they only had to heed a set of rules that accounted for every piece of equipment that was used. Now they can take a risk-based approach to validation by addressing safety, efficacy and quality in the product considerations. This enables the industry to place its investments where it makes the most sense. The onus ultimately falls on manufacturers to accept greater responsibility to validate their systems having the attendant benefits of cost and time to market savings.

GAMP helps provide a quality product from the manufacturer, and helps to limit the pharmaceutical industry’s culpability by ensuring proper steps were placed to deliver a quality product through validated systems. By incorporating input from the full spectrum of stakeholders, fine-tuning and further development of the process is geared towards benefiting the life sciences industry and the general consumer market.

The tools exist for companies to take the steps needed to reap the benefits of validation. Understanding an early adoption of GAMP can increase a company’s competitive position, especially with the implementation of new technologies. By staying aware of technological innovations, companies are able to increase efficiency, minimize risks and reduce costs.

What is Piping and Instrumentation Diagram (P&ID)?

A piping and instrumentation diagram (P&ID) is a drawing in the process industry. A P&ID shows all piping, including the “physical sequence of branches, reducers, valves, equipment, instrumentation and control interlocks.” A P&ID is used to operate the process system, since it shows the piping of the process flow along with the installed equipment and instrumentation.

P & IDs play a key role in maintaining and modifying the process they describe, because it is important to demonstrate the physical sequence of equipment and systems, including how these systems connect. In terms of processing facilities, a P&ID is a visual representation of key piping and instrument details, control and shutdown schemes, safety and regulatory requirements, and basic start-up and operational information.

A P&ID should include the following:

  • Instrumentation and designations
  • Mechanical equipment with names and numbers
  • All valves and their identifications
  • Process piping, sizes, and identification
  • Vents, drains, special fittings, sampling lines, reducers, increasers, and swaggers
  • Permanent start-up and flush lines
  • Flow directions
  • Interconnections references
  • Control inputs and outputs, interlocks
  • Interfaces for class changes
  • Computer control system
  • Identification of components and subsystems delivered by the process

A P&ID should NOT include the following:

  • Instrument root valves
  • Control relays
  • Manual switches
  • Primary instrument tubing and valves
  • Pressure temperature and flow data
  • Elbow, tees and similar standard fittings
  • Extensive explanatory notes

A P&ID involves various symbols to represent all of the included parts, components, and information. Their symbology is defined on separate drawings referred to as “lead sheets” or “legend sheets.” Lead sheets should be customized to each company’s process plants, though in general, the P&IDs are based on a core set of standard symbols and notations. The most important part of the lead sheets is that they are organized logically so that it is possible to easily locate the symbols and tags. While it’s a good practice to have lead sheets for the major equipment in a factory, it may not be necessary because this major equipment already should be tagged and named with general specifications for identification purposes.

Letter and number combinations appear inside each graphical element and letter combinations are defined by the ISA standard. Numbers are user assigned and schemes vary. While some companies use sequential numbering, others tie the instrument number to the process line number, and still others adopt unique and sometimes unusual numbering systems. The first letter defines the measured or initiating variables such as Analysis (A), Flow (F), Temperature (T), etc. with succeeding letters defining readout, passive, or output functions such as Indicator (I), Recorder (R), Transmitter (T), etc.

Below are some piping and instrumentation diagram symbols with letters.


Because a P&ID contains such important information, it is critical to the workings of the process industry that the process plants apply tags or labels to keep track of all of the equipment, piping, valves, devices, and more. Those labels must match the symbology and should not fail, so that the plant’s operations run smoothly and efficiently. That’s why the unique identifiers involved in the P&ID, tagging, and labeling process are critical.

The P&ID and tags ensure that even collections of similar objects have unique tags so that identical valves, pumps, instruments, etc., can be uniquely identified
The P&ID and tags make it possible to assemble the process plant in a structured manner so that additions, deletions, changes, etc., are possible from a whole-unit scale down to a single valve on a pipe at any location.

The P&ID and tags contain scores of metadata that provides, or links to, more details including specifications, materials of construction, data sheets, etc.
Best Practices for Tagging Equipment When Considering P&ID.

Using a numeric-only system for tagging equipment is the best way for process industries to avoid the problems with labeling by abbreviated names. Structured tag systems are more intuitive for every team that deals with the equipment, including developers, operators, and maintenance. The equipment tag format should be a series of three numbers, beginning with an area number, followed by an equipment type code, and then ending with a unique sequence number.

Area numbers represent an area that may be determined by the physical, geographical, or logical grouping location by the plant site
Equipment types are fairly straightforward, but if equipment has multiple functions, users should determine how to select the most suitable equipment type code.

Sequence numbering is the consecutive numbering of similar equipment in any given area, and it’s important to being the sequence at 01 so that all equipment can have it’s own sequence number.

Energy Audit

Energy Audit – An Overview

Energy Audit is the first step in Energy Conservation and Energy Efficiency Projects for Industrial Plants. Energy Audit is a periodic exercise undertaken by a plant to assess its energy consumption and identify opportunities for Energy Conservation and Energy Efficiency. It also helps plant personnel in modernizing the plant with new technological solutions. It benefits plants cut down production costs.

In India, Energy Audit is quite popular in an Industrial or Commercial Facility. Many companies have realized the potential of energy saving in their plant. However one must realize that Energy Audit is only the first step in the direction of energy efficiency and energy conservation. The recommendations made as part of the energy audit have to be implemented to achieve the energy saving targets.

The energy saving recommendations doesn’t require much investment. In some high cases, the investment may be higher. The plant then takes up the investments in a phase-wise manner, which result in delayed energy saving for the plant. In fact the plant may never take some of the recommendations up. This renders the entire energy audit exercise futile.

Energy Audit works for every single Plant or Commercial Facility, as there is always scope for Energy Optimization through Energy Conservation & Energy Efficiency. Every plant goes through some changes over a period of time. Moreover an external Energy Audit team works across departments and brings in rich experience gained from Energy Audit of several plants. This not only results in gaining fresh perspective of Energy saving possibility by an external team also results in bench-marking based on similar parameters.

Energy Audit gives a positive orientation to Preventive Maintenance, Safety and Quality Control programs thereby improving the overall efficiency and output of existing system.

Nearly all the Industrial Units and Commercial Complexes have a potential to save 10-15% on Energy Bills and additional savings in Thermal Energy.

The evident reason why a plant goes for an Energy Audit is the saving of energy. This saving translates into monetary saving and hence can have a direct impact on profitability of a Company. It is also a step towards sustainability.

However, Energy Audits should look at a more comprehensive approach than just reducing cost. Industries should focus more on reducing their carbon footprint as necessitated by Governing Environmental Laws. Energy Audits must go beyond the conventional approach and adopt newer technologies for Green Power Generation.

With increased environmental awareness the pressure on Industries is mounting to reduce their Carbon footprint by adopting Greener Methods wherever possible. In such as scenario Energy Audit would play a crucial role in offering Industries a comprehensive approach towards a Greener Plant.

There is no specific answer as to how much energy a plant could save post an Energy Audit. An estimate could certainly be provided and in all cases Energy Audit could prove to be useful and economically viable. This is especially true in the present day scenario when Energy costs are ever rising and are expected to rise further.

Each Industrial Plant must carry out Energy Audits for reducing their energy usage by adopting energy conservation and energy efficiency measures.

Fire Protection and Safety

Irrespective of its occupancy status, a fire can happen at any time and any place.
Fire has the potential to cause harm to its occupants and severe damage to property. Fire doesn’t only interrupt the whole process of manufacturing and production but also can cause major damage to the building and plant. Much work will be required in order to restore the entire production process.

Successful prevention of fire depends solely on the management who must survey the operation of the business and determine where the loss potential lies.

Inadequately maintained machines can be fire prone. The overheating of bearing, due to insufficient lubrication or the presence of dust, and heat caused by friction are common causes of fire. Frequent inspection and regular maintenance will reduce risk and make the general tidiness of premises easier to achieve.

Major fires start in storage area and warehouses than production areas. Poorly stored goods, even though they are not flammable, may help to spread fire and hinder fire fighters gaining access to the seat of the fire or reduce the effectiveness of sprinkler systems. Goods tidily stored with gangways may help to inhibit the spread of fire.

Fire Safety Audit

Fire has been rated as the 5th largest risk in the Indian Industry. Electrical defaults are the major causes of fire in India. Fire Safety Audit is found to be an effective tool for assessing fire Safety standards of an organization. In other words, it is aimed to assess the building for compliance with the National Building Code of India, relevant Indian Standards and the legislations enacted by State Governments and Local Bodies, on fire prevention, fire protection and life safety measures.

Though fire safety audit is found to be an effective tool for assessing fire safety standards of an occupancy, there is no clear cut provisions in any of the safety legislations in India, regarding the scope, objective, methodology and periodicity of a fire safety audit. Therefore, Fire Safety Audit should be made mandatory for all over India and the work should be entrusted to independent agencies, which have expertise in it. It is reasonable to have a fire safety audit in every year.

Clean agent suppression systems

Clean agent fire suppression systems make the use of inert gases and chemicals in extinguishing a fire.They are also known as gaseous fire suppression. In these systems, fire is suppressed manually or automatically by reducing heat rather than reducing oxygen, reducing fuel or preventing the chain reaction effect of fire. These systems work on a total flooding principle where the agent is applied in a three dimensional method within the enclosed space to deliver a concentrated, highly focused dose of fire suppression.

Clean agent systems are able to suppress fires without causing additional damage unlike water. This drastically reduces the costs incurred for repairs and replacements. This makes these systems the fire suppression systems of choice for commercial and public enterprises that want fast, effective fire suppression that minimizes damage to structures, electronics and other assets.

The agents are non-toxic, they cause no breathing problems for people and won’t obscure vision in an emergency situation.

Automatic Sprinkler Systems

Sprinkler systems are among the most useful tools in firefighting. Automatic sprinklers often are one of the most important fire protection options. The successful application of sprinklers is dependent upon careful design and installation of high quality components by capable engineers and contractors.

A sprinkler system must be installed in compliance with the building’s need. Wet pipe systems offer the greatest degree of reliability and are the most appropriate system type for most heritage fire risks. With the exception of spaces subject to freezing conditions, dry pipe systems do not offer advantages over wet pipe systems in heritage buildings. Preaction sprinkler systems are beneficial in areas of highest water sensitivity. Their success is dependent upon selection of proper suppression and detection components and management’s commitment to properly maintain systems. Water mist represents a very promising alternative to gaseous agent systems.

In India, although there are many rules and regulations, codes and standards related to fire safety they are seldom followed. Laxity in following fire safety measures causes major fires in many buildings. Proper attention must be paid to minimize fire loss because ultimately the community at large has to bear all the losses. There exists large number of different types of firefighting equipment and suppression systems to suit specific requirements. The use of smoke detectors, fire alarms, automatic sprinklers, water mist systems, clean agent suppression system should be encouraged. Above all the success of fire prevention and fire protection mainly depend upon the active co-operation from all personnel.

Process Engineering: An Overview

Process Engineering focuses on design processes, operation, process control, and process optimization. This discipline of engineering may focus on physical, chemical, or biological processes. Process engineering encompasses a large array of different industries and sectors. It has a wide range of applications, considerable potential value, and diverse methods.

Process engineering, as a discipline, can be traced back to the era of the 60s, when the term was first coined. However today, this engineering field has gained popularity across the globe. Numerous companies offer Process Engineering services. It is an active area for research, study and application. Process engineering has effected positive change on a global scale.

Since Process Engineering has a broad range of applications in various industries and sectors, the specifications in analysis varies with each sector. Process engineering have various sub-disciplines. Experts usually specialize in one or two of these sub- disciplines.

Process Design – Process design looks at the way the process in question has been designed and set up. It looks for ways to improve this design and structure, and may utilize hierarchical decomposition flow sheets, attempt superstructure optimization, or study plants with multi-product batches. Poor, inefficient design and structure elements can then be removed and substituted with design components that optimize the system better.

Process Operations – Process operations looks at the way the process in question is being executed. It may incorporate real-time optimization or fault diagnosis in an effort to improve operations efficiency. It may also study the operation’s schedule and examine multi-period planning, and other relevant data.

Process Control – Process control concentrates on the reliability of the process. It often employs tools such as controllability measures, robust control, model predictive control, statistical process control, and process monitoring to name just a few. By improving control over the process more consistent, dependable results are gained.

Supporting Tools – Supporting tools in process engineering focuses on the ancillary tools and systems that help support the primary process. These tools may include things such as equation based process simulation, AI or expert systems, sequential modular simulation, global optimization, large-scale nonlinear programming (NLP), optimization of differential algebraic equations (DAEs), and mixed-integer nonlinear programming (MINLP). These supporting tools enhance the overall productivity and quality of the process.

Process engineering is beneficial to industries in various ways. They include everything from debottlenecking certain key problem areas, improving production speed, eliminating unneeded steps from a process, making the process or system safer, and increasing the quality, consistency, and/or volume of output. By and large process engineering provides a way for industries to reduce their costs while increasing the overall efficiency of their processes.

Process engineering has an incredibly far-reaching impact and potentially holds promise for nearly any industrial or commercial business. It is also at the forefront of expanding what is possible in the sciences and technology sectors. Some particular industries served by process engineering include:

  • Chemical
  • Petrochemical
  • Refining
  • Food and food processing
  • Manufacturing
  • Mineral processing
  • Medical
  • Pharmaceutical
  • Bio-techs
  • Biomedical
  • Textiles
  • Transportation

Process engineering is a fast-paced, dynamic discipline that is continually evolving and pushing the envelope of what is possible. Panorama provides a thorough professional service that covers each step of process engineering. With roots in Chemical and Pharmaceutical industry, Panorama provides the best service.

Signs your construction project is headed towards failure

Chemical and Pharmaceutical Plant Construction projects involve high risks and heavy investments. Sometimes a single risk can manage to blowout your project. At other times, a combination of risks will be the reason for your project failure. One or multiple, either can prove to be fatal for the project and company. It is critical to identify project failure sooner and devise solutions before the risks escalate.

Here’s a list of obstacles that could lead to project failure and solutions on how to overcome them.

  1. Schedule overdue – Scheduling is the first step one takes when working on any project. For any successful project, scheduling needs to be on track. Once the train is off track, your project is bound to suffer. Project leaders must ensure that every schedule is being followed devotedly. In case work deviates from the track immediate measures must be taken to cover for lost time.
  2. Team mismanagement – For a project, the team comprises of experts from varied fields. Architects, maintenance engineers, owners, electricians, plumbers etc. are few of the people that work together on the project. Disagreements and conflicting ideas lead to setbacks in your project. The most effective way to handle these holdups is to evaluate ideas and execute the strategies that are most effective.Project management services should be implemented after thorough analysis.
  3. Budget – While being on schedule is important, managing to be on the stipulated budget is imperative. Spending over the budget can lead to major dents in the financial plan. Project leaders must always be on their toes especially when the budget is skirting towards the warning line.Costs for construction projects are high and involve a lot of risks.
  4. Poor communication – Any project is likely to fail with poor communication. Generally, lower level employees are hesitant to report to upper level management leading to delay in project work. Upper level managers consider it irrelevant to inform employees at the lower level. Communication amongst all levels is vital to ensure that the project is functioning smoothly. The project leader should act as the communicator link between all levels.
  5. Inconsistent management – Project leaders must avoid inconsistency in decision making. When minor plans keep changing course, it will be difficult to meet the goals in time. Leaders have to be firm in their decision-making and must have a foresight for the future. Project management services should be implemented to ensure the success of a construction project.

Every project, no matter how big or small, will face problems at every stage. Good leadership and communication is the glue that will stick your project together in times of failure. A healthy working environment for the employees and strategic approach aid in the long run.
Panorama provides complete project management services right from planning to execution. Every step is supervised under the watchful eyes of experts in the field. With Panorama, your construction project is far from the trenches of failure.

Process integration in chemical manufacturing & engineering

A popular myth most people aware of Process Integration is that they compare it with the design of heat exchanger networks. As a fact, the design of heat exchanger networks is a part of Process Integration, the entire spectrum of process integration is however far wider.

The sole objective of Process Integration is the design & optimization of integrated chemical manufacturing systems. The execution of Process Integration initiates with the selection of series of processing steps & their interconnection to produce a streamlined manufacturing system which transforms raw materials into desired products.

Process Integration does not stop with the synthesis of process flow sheets for individual processes. Individual processes typically operate as part of an integrated manufacturing unit consisting of a number of processes controlled by a common utility system. Linking processes to the common utility system creates interactions between the different processes through the utility system. If understood properly, these interactions can be used to maximize the performance of the site as a whole. Moreover, to enhance & ensure that maximum efficiency is utilized, the steps taken by individual processes on a site to exchange materials can be customized.

Chemical processing industry is growing alarmingly & is becoming an adherent part of sustainable industrial activity. This means making use of raw materials as efficiently & as economical and practical in order to:

  • Prevent the production of waste than can be harmful to environment
  • Preserve the source of raw materials as much as possible

1.1

Chemical processing tips:

  • Energy should be used efficiently, not only to reduce costs, but to prevent the buildup of carbon dioxide in the atmosphere from burning fossil fuels and to preserve the reserves of fossil fuels.
  • Water should be consumed in sustainable quantities that does not cause any deterioration in the quality of the water source or the long-term quantity of the reserves.
  • Aqueous and atmospheric emissions must not be environmental harmful and solid waste to land film must be avoided.
  • Finally, all aspects of industrial activity must feature good health and safety practices.

Process integration is more than just pinch technology & design of heat exchanger networks. It has far wider scope and touches every area of process design. Switched-on industries are making more money from their raw materials & capital assets while becoming cleaner & more sustainable.

Trends in process integration:

Current methods still attempt wherever possible to use a 2-step approach to design. Initially, performance targets are set to scope & screen options. Once these important options have been screened, a design method is used to achieve targets.

In the future, there’s a high probability that the boundary between targets & design will be blurred & these will be based on more structural data regarding process networks.

It is also more likely that we get to see a wider range of applications being used for process integration. There is still immense work to be carried out in the area of separation; not only in complex distillation systems, but also in mixed type of separation systems. The use of process integration techniques for reactor design has seen rapid progress, but still there’s plenty to discover. There’s also a huge demand for process integration being applied to process operations keeping in mind safety & control.

The next trend of software tools for process integration is going to be a big wave in the chemical processing industry. While simulation tools are becoming quite mature & well developed, process integration software so far is just in its infancy stage. Developments in software leading to open-architecture will allow process integration software to interact online with simulation software to access physical property data & simulation models.

Automatic Sprinkler System Design Factors

Irrigation and water systems for a residence can prove to be an essential mechanical aspect of any garden or lawn. Designing a proper automatic sprinkler system for your home is something that should be done with great care and technical know-how. In India, there a number of companies that provide this service for homeowners or companies with areas that require watering.

Automatic Sprinkler System Design

Planning an efficient automatic sprinkler system for your property requires you to note a number of essential things. One needs to correctly understand the design capacity of the sprinkler system and just how much water is actually available for the sprinkler system to utilize. Often times, irrigation systems in India are done using the public water supply. A number of things should therefore be checked, these include:

  • Check the water pressure (PSI). Attaching a pressure gauge to the external faucet nearest to the water meter can do this. You should ensure that no other water in flowing within the house. Turn on the water supply and take a record of the number indicated.
  • Determine the water volume available for the sprinkler system
  • Also, using an appropriate system design capacity chart, locate your own sprinkler system design capacity and static pressure.

After checking these basic things, then you can proceed to installing your sprinkler system.

  • Do an appropriate plot plan by indicating and sketching the location of your house, taking note of all trees, lawns and fences around the house.
  • After determining the water pressure and volumes necessary, the next step is to select the sprinkler head. There are three main types and these include; rotors for large areas, rotating steam spray sprinklers and small area sprinklers.
  • After understanding the reach and capacity from choosing your sprinkler heads, you can design where you want to locate your sprinkler heads around your lawn. Sprinkler heads usually come with specifications on their reach so be sure not to place sprinklers far apart so that everywhere on your lawn can be watered. Sprinklers can also be divided into zones if the yard is quite large.
  • Properly ensure all points of connection are in proper correspondence with each of the specifications needed, including pipes and valves. Most professionals would recommend PVC pipes because of the constant water pressure from the backflow preventer to the zone control valves.
  • Run a proper system installation ensuring the wires for the main control are all connected.

Automatic sprinkler systems are quite technical to install and you should contact the help of an experienced professionals. Most homes in India have small watering areas so the workload may not be so much of an undertaking. For larger areas such as fields and parks, a proper technical team should be employed to properly take care of all the technicalities that may arise on the job. It may also not be a one-day job so patience is required in order to sort out all the small aspects to ensure your automatic sprinkler system is working perfectly.