Water Reclamation System: An Overview

The growth of population is causing the demand for freshwater to increase at an alarming rate. Demand in such areas can quickly expand to exceed water supply if necessary strategies are not implemented.  An approach that is quickly gaining acceptance is considering municipal wastewater as a vital resource for appropriate application including agricultural and other irrigation, industrial and domestic uses. This practice is called water reclamation and reuse and is an example of an Environmentally Sound Technology because it protects the environment, results in less pollution, utilizes resources in a more sustainable manner, allows its waste and products to be recycled, and handles residual wastes in a more acceptable manner than the technologies for which it substitutes.

Water reclamation is the treatment or processing of wastewater to make it reusable with definable treatment reliability and meeting appropriate water quality criteria; water reuse is the use of treated wastewater for a beneficial purpose. The term, reclaimed water, is used interchangeably with an often more acceptable term recycled water.

A number of sustainable and safe approaches to meeting increasing water demand with municipal wastewater have been identified. These general approaches include:

  • Substituting reclaimed water for applications that do not require potable water
  • Augmenting existing water sources and providing an additional source of water supply to assist in meeting both present and future water needs
  • Protecting aquatic ecosystems by decreasing the diversion of freshwater, as well as reducing the quantity of nutrients and other toxic contaminants entering waterways
  • Postponing and reducing the need for water control structures
  • Complying with environmental regulations by better managing water consumption and wastewater discharges

Wastewater treatment schemes have multiple levels of treatment that ensure water discharged to the environment doesn’t pose a significant risk to the health. Treated wastewater is usually discharged to surface water and that surface water is often used by a water source for a water utility downstream. Hence, many systems use wastewater inadvertently. Thus, many water systems reuse wastewater inadvertently.

Water reclamation and reuse approaches utilize the same treatment technologies as conventional wastewater treatment, including secondary clarifiers, filtration basins of various designs, membranes, and disinfection basins. Each and every water reclamation treatment scheme requires some degree of customization; a great deal of work is done to define appropriate applications for wastewater treatment processes.

There are many barriers that often limit the implementation of water reclamation and reuse systems.  Physical issues such as corrosion of pipes, blockage etc. can hinder the transportation of reclaimed water.

Technical barriers can hinder successful implementation of water reclamation and reuse programs as well. Implementation of reclamation and reuse programs often requires the retrofitting and construction of new systems as well as the development of new technologies This can lead to high costs that effectively limit the implementation of these programs.

Reusing rainwater or gray water on-site can have significant financial and environmental benefits. It is highly important to leave it to the experts to design and implement these processes. Panorama has decades of experience in water reclamation systems.

What is Process Flow Diagram?

A Process Flow Diagram (PFD) demonstrates the relations between significant segments in a framework. PFD likewise arrange process configuration esteems for parts in various working modes, commonplace least, ordinary and greatest. A PFD does not demonstrate minor segments, funneling frameworks, channeling appraisals and assignments. They use a series of symbols and notations to depict a process. The symbols vary in different places, and the diagrams may range from simple, hand-drawn scrawls or sticky notes to professional-looking diagrams with expandable detail, produced with software.

A Process Flow Diagram has multiple purposes:

  • To document a process for better understanding, quality control and training of employees.
  • To standardize a process for optimal efficiency and repeatability.
  • To study a process for efficiency and improvement. It helps to show unnecessary steps, bottlenecks and other inefficiencies.
  • To model a better process or create a brand-new process.
  • To communicate and collaborate with diagrams that speak to various roles in the organization or outside of it.

A typical PFD for a single unit process will include these elements:

  • Major equipment: Including names and ID numbers. Examples include compressors, mixers, vessels, pumps, boilers and coolers.
  • Process piping: Moves the product, usually fluids, between equipment pieces.
  • Process flow direction
  • Control valves and process-critical valves
  • Major bypass and recirculation systems
  • Operational data: Such as pressure, temperature, density, mass flow rate and mass-energy balance. Values often will include minimum, normal and maximum.
  • Composition of fluids
  • Process stream names
  • Connections with other systems

What to exclude in a PFD:

  • Pipe classes and pipe line numbers
  • Process control instruments
  • Minor bypass values
  • Isolation and shutoff valves
  • Maintenance vents and drains
  • Relief valves and safety valves
  • Code class information

The process flow diagram is an essential part of chemical engineering. It conveys a process and the path of its individual components – therefore, it is essential to learn how to read and create one.

The information that a process flow diagram conveys can be categorized into one of the following three groups. The more detailed these three sections are, the easier it is for a user of the process flow diagram to follow along and understand.

  • Process Topology
  • Stream Information
  • Equipment Information

Process topology is characterized as the collaborations and areas of the distinctive hardware and streams. It incorporates the greater part of the associations between the hardware and how one stream is changed to another after it moves through a bit of gear.

Streams should be labeled so that they follow consecutively from left to right of the layout so that it is easier to follow along and locate numbers when you are trying to locate streams listed on the tables.

Notwithstanding the stream data, there ought to likewise be a table specifying gear data. This table can be useful for the practical investigation of the plant since it ought to give the data important to assess the cost of the gear. The gear data table ought to incorporate a rundown of the greater part of the hardware that is utilized as a part of that specific stream graph alongside a depiction of size, stature, number of plate, weight, temperature, materials of development, warm obligation, region and other basic data.

Hygienic System Design for Food Processing Facilities

The demand for freshly made food is increasing on the rise. This demand has led to the development of methods that use minimal preservatives and additives. The use of lesser preservatives lead to decreased shelf life of food and makes them more susceptible to contaminants. Product contamination occurs not only at the equipment level but also at factory level.

Incorporation of hygienic design into your food processing facility can prevent development of pests and microbiological niches; avoid product contamination with chemicals e.g., cleaning agents, lubricants, peeling paint, etc. and particles e.g., glass, dust, iron, etc.; facilitate cleaning and sanitation and preserve hygienic conditions both during and after maintenance. The infrastructure of a facility must be designed in a manner to avoid contamination of food products.

To ensure safe food and adequate sanitation programs, the facility and surroundings in which foodprocessing and handling operations are conductedmust be designed and constructed with sanitarydesign principles in mind.

The layout of a food facility must be adapted to the hygienic requirements of a given procedure, packaging or storage area.  The interior of the manufacturing plant must be outlined with the goal that the stream of material, work force, air and waste can precedein the right way. As they end up consolidated into sustenance items, crude materials and fixings should move from the dirty to the ‘clean’areas. However, the flow of food waste and discarded outer packaging materials should be in the opposite direction. Before building begins, reproduction of the stream of individuals, materials, items and waste can enable the originator to decide the most fitting spot for introducing the procedure gear and where the procedure and utility funneling ought to enter the procedure region.Indeed, even the recreation of support and cleaning tasks can be helpful to decide the most fitting production line design.

To spare building and redesign costs, potential issues can be understood before the beginning of development. Moreover, in the advancement of high cleanliness territories, computational liquid elements can help recreate and envision expected airflows.

To meet a conceivable increment of handling activities inside the sustenance plant later on, the building and its nourishment preparing emotionally supportive networks ought to be outlined so they can either be extended, or another building or potentially utilities can be included. Oversizing the primary utility frameworks is a typical practice. On the off chance that conceivable, the processing plant ought to likewise be made versatile (i.e., the capacity to change the generation zone for other assembling purposes) and flexible (i.e., the capacity to do distinctive things inside a similar room).

To exclude flooding and the section of rodents, industrial facilities should be worked at a larger amount than the ground outside. Outside entryways shouldnot open specifically into generation zones, and windows should be missing from nourishment preparing regions. The quantity of stacking docks should not be negligible and be 1– 1.2 m over the ground level. Ideally, outside docks ought to have an overhanging lip, with smooth and uncluttered surfaces that are inclined somewhat far from the working to energize water run-off. Regions underneath docks ought not give harborages to bugs, ought to be cleared and should deplete enough. To give security to items and crude materials, docks can be protected from the components by rooftops or coverings. Be that as it may, these structures can turn into a genuine sanitation issue because of perching or settling of flying creatures. Winged creature spikes or nets can take care of that issue. To keep the section of creepy crawlies, dock openings ought to be given plastic strips or air drapes, and outer lighting to enlighten these industrial facility doors ought to be put in areas from the manufacturing plant building. Meddling bugs can in any case be pulled in and slaughtered inside the sustenance processing plant by deliberately situated bright (UV) light electric lattices or sticky pasteboard traps.

Many food manufacturers only make use of the classic food preservation approach to control food safety. Clean sustenance industrial facility configuration begins with the choice of a fitting area and the utilization of a sterile building idea that keeps the passage of irritations. The industrial facility format must allow the right stream of materials, waste, air and staff without trading off nourishment wellbeing and in addition the establishment of clean zones that offer maximal assurance to the sustenance created. Process hardware and process and utility channeling must be composed from nourishment review materials that are perfect with the sustenance item delivered and the cleaning specialists and disinfectants connected to purify the generation condition. To stay away from the presentation of new contaminants, gear and funneling must be cleanly coordinated inside the production line’s premises. Dividers, roofs and floors must have a fitting complete the process of, lighting must give adequate enlightenment and channels should ensure legitimate seepage to encourage clean-ing and to keep up sterile conditions inside the plant. The point of this article is to fill in as a prologue to legitimate clean sustenance office plan.

Design for safety

System safety

System Safety is the application of engineering and management principles, criteria, and techniques to optimize all aspects of safety within the constraints of operational effectiveness, time, and cost throughout all phases of the system life cycle. It is a planned, disciplined and systematic approach to preventing or reducing accidents throughout the lifecycle of a system

Primary concern is the management of risks through:

  • Risk identification, evaluation, elimination & control through analysis, design & management

History of system safety

Design Safety arose in the 1950s after dissatisfaction with the fly-fix-fly approach to safety. Design Safety was first adopted by the US Air Force. It led to the development of mil-std-882 Standard Practice for System Safety (v1 1960s). The basic concept of System was rather than assigning a safety engineer to demonstrate that a design is safe, safety considerations were to be integrated from the design phase of the project.

Founding principles

Safety should be designed in

  • Critical reviews of the system design identify hazards that can be controlled by modifying the design
  • Modifications are most readily accepted during the early stages of design, development, and test
  • Previous design deficiencies can be corrected to prevent their recurrence

Inherent safety requires both engineering and management techniques to control the hazards of a system

  • A safety program must be planned and implemented such that safety analyses are integrated with other factors that impact management decisions

Safety requirements must be consistent with other program or design requirements

  • The evolution of a system design is a series of tradeoffs among competing disciplines to optimize relative contributions
  • Safety competes with other disciplines; it does not override them

The main principles of Safe design are:

  • Inherent safety
  • Safety factors
  • Multiple independent safety barriers

Inherently safe design 

Inherent: belonging to the very nature of the person/thing (inseparable). It is recommended that Inherent safe design should be the first step in safety engineering. Change the process to eliminate hazards, rather than accepting the hazards and developing add-on features to control them, unlike engineered features, inherent safety cannot be compromised.

Minimize inherent dangers as far as possible by considering the following:

  • Potential hazards are excluded rather than just enclosed or managed
  • Replace dangerous substances or reactions by less dangerous ones (instead of encapsulating the process)
  • Use fireproof materials instead of flammable ones (better than using flammable materials but keeping temperatures low)
  • Perform reactions at low temperatures & pressures instead of building resistant vessels

Safety Factors

Factors of safety (FoS), also known as safety factor (SF), is a term describing the load carrying capacity of a system beyond the expected or actual loads. Essentially, the factor of safety is how much stronger the system is than it usually needs to be for an intended load. Safety factors are often calculated using detailed analysis because comprehensive testing is impractical on many projects, such as bridges and buildings, but the structure’s ability to carry load must be determined to a reasonable accuracy.

When the material used is under strength, factor of safety covers uncertainties in material strength. It covers poor workmanship. It also covers unexpected behavior of the structure and natural disasters. Stresses are produced which may be very high. Factor of safety may take care of these loads during construction. Presence of residual stresses and stress concentrations beyond the level theoretically expected.

Multiple Independent Safety Barriers

Safety barriers are arranged in chains. The aim is to make each barrier independent of its predecessors so that if the first fails, then the second is still intact, etc. Typically, the first barriers are measures to prevent an accident, after which follow barriers that limit the consequences of an accident, and, finally, rescue services as the last resort.

The basic idea behind multiple barriers is that even if the first barrier is well constructed, it may fail, due to unforeseen reason, and that the second barrier should then provide protection. The major problem in the construction of safety barriers is how to make them as independent of each other as possible. If two or more barriers are sensitive to the same type of impact, then one and the same destructive force can get rid of all of them in one swoop.

These three principles of engineering safety – inherent safety, safety factors, and multiple barriers are quite different in nature, but they have one important trait in common. They all aim at protecting us not only against risks that can be assigned meaningful probability estimates, but also against dangers that cannot be probabilized, such as the possibility that some unforeseen even triggers a hazard that is seemingly under control. It remains, however, to investigate more in detail the principles underlying safety engineering and, not least, to clarify how they relate to other principles of engineering design.

 

 

Continuous Distillation Column Design

Procedure for Continuous Distillation Column Design

Distillation is used to separate components in a feed mixture based upon their relative boiling points. A simple, continuous distillation column can make the separation between two components into two product streams. In multi-component systems, the two main components to be separated are designated as the light and heavy keys. The light key is the more volatile component in greater purity in the top product stream, and the heavy key is the less volatile component in greater purity in the bottom product stream.

Vapor-Liquid Equilibrium

The starting point upon which all column design is based is to accurately determine the relative volatility of the key components to be separated. Using a mass and energy balance simulation program. The user must set up the basis of the simulation by selecting an appropriate fluid package and the components present in the feed. Activity coefficients, estimated by the program or provided by the user, are used to relate non-ideal component interactions.

Column Operating Objectives

The first step in column design is specifying the column operating objectives. These are defined by a primary product composition and an optimal recovery of the product from the waste, recycle or less important by-product stream. These specifications should be in terms of the heavy key impurity in the top stream and the light key impurity in the bottom stream.

Operating Pressure

Once the top and bottom stream compositions are specified, the dew point of the top stream and the boiling point of the bottom stream may be determined at various pressures. An operating pressure should be selected that allows acceptable temperature differences between available utilities because the overhead vapor must be condensed and the bottom liquid reboiled.

When possible, atmospheric or pressure operation of the column is preferred in order to avoid requiring a vacuum system. However, another consideration is component heat sensitivity, which may require lower pressure operation to avoid fouling, product discoloration or decomposition. Often the relative volatility is also improved at lower pressures.

R/Dmin & Nmin and Feed Stage Estimation

Using the simulation program, shortcut procedures based upon total reflux operation allow the minimum reflux ratio (R/Dmin) and minimum number of ideal separation stages (Nmin) to be determined. Using an actual reflux ratio of 1.2 times the minimum reflux ratio will allow an optimal number of stages to be estimated as well as an appropriate feed stage.

Rigorous simulation of the distillation at a given feed rate and composition may now be accomplished by specifying the following: top and bottom product compositions, number of stages, feed stage, and top and bottom pressure.

Parametric cases of this simulation should be used to verify the estimated number of stages and feed location. Add and subtract stages from both the stripping and rectifying section of the column. Do this until the required reflux ratio becomes approximately 1.2 times the minimum reflux ratio, or the trade off between utility usage and the number of stages appears optimal for the specific column. As more total stages are used, the required reboiler duty will decrease until there are diminishing returns.

Diameter and Height of the Column

At this point, the distillation process is well defined, leaving the column diameter and height to be determined. The chosen design case from the simulation program provides the internal liquid and vapor flows and their physical properties for every stage of the column. The column diameter is chosen to provide an acceptable superficial vapor velocity, or “Fs factor”. This is defined as vapor velocity (ft/sec) times square root of vapor density (lb/ft3), and liquid loading defined as volumetric flow rate (gal/min), divided by the cross sectional area of the column (ft2). The column internals can be chosen as either trays or packing. Trayed columns must avoid flooding, weeping and downcomer backup. Packed columns must avoid flooding, minimum surface wetting and mal-distribution.

Project managers should understand and determine these five key design elements for the projects success. Cost, chemical interactions and equipment needs change in a non-linear fashion, as increased output is required. Qualified engineers should consider these critical steps for distillation column design.

RO/DI Water Systems

RO/DI Water Systems

RO/DI stands for Reverse Osmosis and Deionization. The product is a multi-stage water filter, which takes in ordinary tap water and produces highly purified water.

Tap water often contains impurities that can cause problems. These may include phosphates, nitrates, chlorine, and various heavy metals. Excessive phosphate and nitrate levels can cause an algae bloom. Copper is often present in tap water due to leaching from pipes and is highly toxic to invertebrates. An RO/DI filter removes practically all of these impurities.

There are typically four stages in a RO/DI filter:

  • Sediment filter
  • Carbon block
  • Reverse osmosis membrane
  • Deionization resin

If there are less than four stages, something was left out. If there are more, something was duplicated.

The sediment filter, typically a foam block, removes particles from the water. Its purpose is to prevent clogging of the carbon block and RO membrane. Good sediment filters will remove particles down to one micron or smaller.

The carbon, typically a block of powdered activated carbon, filters out smaller particles, adsorbs some dissolved compounds, and deactivates chlorine. The latter is the most important part: free chlorine in the water will destroy the RO membrane.

The RO membrane is a semi-permeable thin film. Water under pressure is forced through it. Molecules larger/heavier than water (which is very small/light) penetrate the membrane less easily and tend to be left behind.

The DI resin exchanges the remaining ions, removing them from the solution.

There are three types of RO membrane on the market:

  • Cellulose Triacetate (CTA)
  • Thin Film Composite (TFC)
  • Poly-Vinyl Chloride (PVC)

The difference between the three concerns how they are affected by chlorine: CTA membranes require chlorine in the water to prevent them from rotting. TFC membranes are damaged by chlorine and must be protected from it. PVC membranes are impervious to both chlorine and bacteria.

Reverse osmosis typically removes 90-98% of all the impurities of significance to the aquarist. If that is good enough for your needs, then you don’t need the DI stage. The use of RO by itself is certainly better than plain tap water and, in many cases, is perfectly adequate.

RO by itself might not be adequate if your tap water contains something that you want to reduce by more than 90-98%.

A DI stage by itself, without the other filter stages, will produce water that is pretty much free of dissolved solids. However, DI resin is fairly expensive and will last only about 1/20th as long when used without additional filtration. If you’re only going to buy either a RO or a DI, it would be best to choose the RO, unless you only need small amounts of purified water.

Duplicating stages can extend their life and improve their efficiency. For example, if you have two DI stages in series, one can be replaced when it’s exhausted without producing any impure water. If you have both a 5-micron sediment filter and a 1-micron filter, they will take longer to clog up. If there are two carbon stages, there will be less chlorine attacking the TFC membrane. Whether the extra stages are worth the extra money is largely a matter of circumstance and opinion.

RO/DI capacities are measured in gallons per day (GPD), and typically fall within the 25-100 GPD range. The main difference between these units is the size of the RO membrane. Other differences are (a) the flow restrictor that determines how much waste water is produced, (b) the water gets less contact time in the carbon and DI stages in high-GPD units than low-GPD units, and (c) units larger than 35 GPD typically have welded-together membranes.

As a result of the membrane welding and the reduced carbon contact time, RO membranes larger than 35 GPD produce water that is slightly less pure. This primarily affects the life of the DI resin.

Most aquarists won’t use more than 25 GPD averaged over time. If you have a decent size storage container, that size should be adequate. A higher GPD rating comes in handy, however, when filling a large tank for the first time or in emergencies when you need a lot of water in a hurry.

The advertised GPD values assume ideal conditions, notably optimum water pressure and temperature. The purity of your tap water also affects it. In other words, your mileage will vary.

An RO filter has two outputs: purified water and wastewater. A well-designed unit will have about 4X as much wastewater as purified water. The idea is that the impurities that don’t go through the membrane get flushed out with the wastewater.

There is nothing particularly wrong with the wastewater except for a slightly elevated dissolved solid content. It may actually be cleaner than your tap water because of the sediment and carbon filters. Feel free to water your plants with it.

Utility System Qualification for the Pharmaceutical Industry

Pharmaceutical equipment manufacturing is a highly regulated industry. Given the stress on product quality and the widespread impact of substandard production on public health and safety, utility system qualification is a critical step that companies must take towards ensuring that all their products comply with federal laws and regulations.

In pharmaceuticals, critical utilities like water and HVAC (Heating, Ventilation and Air Conditioning) systems form the backbone of the manufacturing process. As a result, these are treated, as products that need to satisfy FDA regulatory requirements and pharmaceutical manufacturing standards, just like raw materials and other equipment used in the industry.

The primary use of a utility system is to help pharmaceutical companies check the quality and safety of their products and to ensure they comply with the laws and statutes in the FDA dossier. Without meeting these requirements, a product may fail to be cleared for marketing.

To pass inspection, utilities must pass a string of qualitative and quantitative specifications. Different utility systems have different quality and standard criteria, designed on the basis of inputs from relevant departments and organizations as well as manufacturing and engineering provisions.

When a validation program is set in place for utility systems used in pharmaceutical, critical utilities should be first on the list. It’s important to focus on the design, qualification and monitoring of each utility system used in pharmaceutical or biotech companies, so their end product fulfills all pharmaceutical quality standards.

Utility system qualification is designed to ensure that utilities in use conform to health and safety regulations, as well as pharmaceutical manufacturing standards and cGMP guidelines.

Current good manufacturing practices (cGMPs) are FDA guidelines that check the design, control and monitoring of manufacturing facilities and processes. To comply with cGMP regulations, drugs and medicinal products need to be of the right quality, strength and purity, by way of adequately controlled and monitored manufacturing operations.

Steps in utility system qualification include implementing strong operating procedures, establishing extensive quality control systems, procuring a consistent quality of raw material supplies and maintaining dependable testing labs.

If such a broad control system is implemented in a pharmaceutical facility, it can help to control instances of mix-ups, contamination, errors, defects and deviations during the manufacturing process. Such pharmaceutical products are better able to meet public health and safety laws established by the FDA.

Pharmaceutical cGMP guidelines are flexible enough that all manufacturers are free to decide how to apply FDA controls in ways that fits their unique requirements. They can make use of a variety of processing methods, testing procedures and scientific designs to adapt their manufacturing processes to meet the laws.

Because of the flexibility of these laws, companies can use innovative approaches and sophisticated technology to implement a system of continual improvement in order to achievement a consistent quality of pharmaceutical supplies.

All pharmaceutical manufacturing facilities need to adhere strictly to FDA-approved regulations. There is a lot of stress on the compliance of facility design with cGMP regulations as well as the various procedures associated with pharmaceutical production, so drugs are manufactured under conditions that meet FDA approval.

Failure to meet FDA regulations can result in responsive action by the authorities against the product or the responsible facility, depending upon the seriousness of non-compliance. The company may have to recall the product under orders of the FDA, to ensure it does not cause additional harm or risk to the public.

cGMP requirements can be useful in ensuring the efficacy, quality and safety of pharmaceutical products by making sure facilities are in good operating condition, with sufficiently calibrated and well-maintained equipment, trained and experienced staff and reliable and efficient processes.

While a utility system cannot affect product quality on its own, it forms an integral part of the manufacturing process. Panorama helps you set up validation processes as per your needs.

What is Piping and Instrumentation Diagram (P&ID)?

A piping and instrumentation diagram (P&ID) is a drawing in the process industry. A P&ID shows all piping, including the “physical sequence of branches, reducers, valves, equipment, instrumentation and control interlocks.” A P&ID is used to operate the process system, since it shows the piping of the process flow along with the installed equipment and instrumentation.

P & IDs play a key role in maintaining and modifying the process they describe, because it is important to demonstrate the physical sequence of equipment and systems, including how these systems connect. In terms of processing facilities, a P&ID is a visual representation of key piping and instrument details, control and shutdown schemes, safety and regulatory requirements, and basic start-up and operational information.

A P&ID should include the following:

  • Instrumentation and designations
  • Mechanical equipment with names and numbers
  • All valves and their identifications
  • Process piping, sizes, and identification
  • Vents, drains, special fittings, sampling lines, reducers, increasers, and swaggers
  • Permanent start-up and flush lines
  • Flow directions
  • Interconnections references
  • Control inputs and outputs, interlocks
  • Interfaces for class changes
  • Computer control system
  • Identification of components and subsystems delivered by the process

A P&ID should NOT include the following:

  • Instrument root valves
  • Control relays
  • Manual switches
  • Primary instrument tubing and valves
  • Pressure temperature and flow data
  • Elbow, tees and similar standard fittings
  • Extensive explanatory notes

A P&ID involves various symbols to represent all of the included parts, components, and information. Their symbology is defined on separate drawings referred to as “lead sheets” or “legend sheets.” Lead sheets should be customized to each company’s process plants, though in general, the P&IDs are based on a core set of standard symbols and notations. The most important part of the lead sheets is that they are organized logically so that it is possible to easily locate the symbols and tags. While it’s a good practice to have lead sheets for the major equipment in a factory, it may not be necessary because this major equipment already should be tagged and named with general specifications for identification purposes.

Letter and number combinations appear inside each graphical element and letter combinations are defined by the ISA standard. Numbers are user assigned and schemes vary. While some companies use sequential numbering, others tie the instrument number to the process line number, and still others adopt unique and sometimes unusual numbering systems. The first letter defines the measured or initiating variables such as Analysis (A), Flow (F), Temperature (T), etc. with succeeding letters defining readout, passive, or output functions such as Indicator (I), Recorder (R), Transmitter (T), etc.

Below are some piping and instrumentation diagram symbols with letters.


Because a P&ID contains such important information, it is critical to the workings of the process industry that the process plants apply tags or labels to keep track of all of the equipment, piping, valves, devices, and more. Those labels must match the symbology and should not fail, so that the plant’s operations run smoothly and efficiently. That’s why the unique identifiers involved in the P&ID, tagging, and labeling process are critical.

The P&ID and tags ensure that even collections of similar objects have unique tags so that identical valves, pumps, instruments, etc., can be uniquely identified
The P&ID and tags make it possible to assemble the process plant in a structured manner so that additions, deletions, changes, etc., are possible from a whole-unit scale down to a single valve on a pipe at any location.

The P&ID and tags contain scores of metadata that provides, or links to, more details including specifications, materials of construction, data sheets, etc.
Best Practices for Tagging Equipment When Considering P&ID.

Using a numeric-only system for tagging equipment is the best way for process industries to avoid the problems with labeling by abbreviated names. Structured tag systems are more intuitive for every team that deals with the equipment, including developers, operators, and maintenance. The equipment tag format should be a series of three numbers, beginning with an area number, followed by an equipment type code, and then ending with a unique sequence number.

Area numbers represent an area that may be determined by the physical, geographical, or logical grouping location by the plant site
Equipment types are fairly straightforward, but if equipment has multiple functions, users should determine how to select the most suitable equipment type code.

Sequence numbering is the consecutive numbering of similar equipment in any given area, and it’s important to being the sequence at 01 so that all equipment can have it’s own sequence number.

Process Engineering: An Overview

Process Engineering focuses on design processes, operation, process control, and process optimization. This discipline of engineering may focus on physical, chemical, or biological processes. Process engineering encompasses a large array of different industries and sectors. It has a wide range of applications, considerable potential value, and diverse methods.

Process engineering, as a discipline, can be traced back to the era of the 60s, when the term was first coined. However today, this engineering field has gained popularity across the globe. Numerous companies offer Process Engineering services. It is an active area for research, study and application. Process engineering has effected positive change on a global scale.

Since Process Engineering has a broad range of applications in various industries and sectors, the specifications in analysis varies with each sector. Process engineering have various sub-disciplines. Experts usually specialize in one or two of these sub- disciplines.

Process Design – Process design looks at the way the process in question has been designed and set up. It looks for ways to improve this design and structure, and may utilize hierarchical decomposition flow sheets, attempt superstructure optimization, or study plants with multi-product batches. Poor, inefficient design and structure elements can then be removed and substituted with design components that optimize the system better.

Process Operations – Process operations looks at the way the process in question is being executed. It may incorporate real-time optimization or fault diagnosis in an effort to improve operations efficiency. It may also study the operation’s schedule and examine multi-period planning, and other relevant data.

Process Control – Process control concentrates on the reliability of the process. It often employs tools such as controllability measures, robust control, model predictive control, statistical process control, and process monitoring to name just a few. By improving control over the process more consistent, dependable results are gained.

Supporting Tools – Supporting tools in process engineering focuses on the ancillary tools and systems that help support the primary process. These tools may include things such as equation based process simulation, AI or expert systems, sequential modular simulation, global optimization, large-scale nonlinear programming (NLP), optimization of differential algebraic equations (DAEs), and mixed-integer nonlinear programming (MINLP). These supporting tools enhance the overall productivity and quality of the process.

Process engineering is beneficial to industries in various ways. They include everything from debottlenecking certain key problem areas, improving production speed, eliminating unneeded steps from a process, making the process or system safer, and increasing the quality, consistency, and/or volume of output. By and large process engineering provides a way for industries to reduce their costs while increasing the overall efficiency of their processes.

Process engineering has an incredibly far-reaching impact and potentially holds promise for nearly any industrial or commercial business. It is also at the forefront of expanding what is possible in the sciences and technology sectors. Some particular industries served by process engineering include:

  • Chemical
  • Petrochemical
  • Refining
  • Food and food processing
  • Manufacturing
  • Mineral processing
  • Medical
  • Pharmaceutical
  • Bio-techs
  • Biomedical
  • Textiles
  • Transportation

Process engineering is a fast-paced, dynamic discipline that is continually evolving and pushing the envelope of what is possible. Panorama provides a thorough professional service that covers each step of process engineering. With roots in Chemical and Pharmaceutical industry, Panorama provides the best service.

Ten reasons why your project requires an MEP Consulting Firm

Any project is successful when the right team works on it. For any construction or renovation project an MEP consulting firm is just as important as an architect or a builder. MEP stands for Mechanical, Electrical and Plumbing; a type of engineering that focuses on creating a safe environment for human use.
There are various reasons why MEP consultants are highly important for any building project.

We’ve listed down the top ten reasons.

  1. Mechanical – For any building project, residential or commercial, heating and ventilation services are essential. This is where the MEP engineers step in. They are responsible for the installation and maintenance of air conditioners, heaters, exhaust and smoke control. An MEP consultant will ensure their designs provide comfort and run efficiently.
  2. Electrical – Electrical services are indispensable. Your project will be incomplete without electricity and lighting. MEP consultants are responsible not just for lighting but also other electrical services such as fire alarms, security systems, smoke alarms etc. They provide solutions to the best services that are energy efficient and environment friendly.
  3. Plumbing–The plumbing aspect focuses on fire suppression systems as well as gas delivery systems in medical and laboratory settings. They are also responsible for water and waste management systems such as drinking water, irrigation water, sewers etc.
  4. Effective design – MEP consultants provide the best design solutions that are cost effective and worthwhile in the long run. These designs should not only employ the most recent and competent technologies but also provide foresight to ensure maximum lifecycle.
  5. Environment friendly – Whether it is energy conservation or water conservation, the experts certainly know the best. These consultants aim at providing services that utilize environment friendly products in order to reduce excessive consumption of resources.
  6. Cost Efficient – Every project that you take up has a stipulated budget that needs to be followed. With the help of MEP engineers not only do you manage to stay inside budget but also end up with systems that will be cost efficient in the long run.
  7. Optimum use–The expertise of MEP engineersensures that the products and systems required for your project provide maximum utilization. They ensure that maintenance of systems is limited and simple and workers are well trained to handle issues, if any.
  8. . Indoor environment –While focusing on creating an ecofriendly environment for the outdoors, it is also vital to build a safe and healthy environment indoors. Indoor environment quality refers to the use of natural daylight, moisture control, optimizing systems etc. A healthy indoor environment equates a safer environment for everyone.
  9. Building mechanism –Every system is connected to centralized hardware and software networks that control the indoor and outdoor features in a building. For example, your construction project requires HVAC commissioning; MEP consultants will cover the entire procedure for the project. Automation systems are required to build and maintain a building’s optimal operational performance and ensure safety and comfort the occupants.
  10. Expertise- It is always better to leave the job in the hands of the one that knows the best. MEP consultants are highly trained and experienced in their field. They work closely with architects and owners to provide successful coordination of building systems.

Panorama offers a variety of services in the mechanical, electrical and plumbing divisions for pharmaceutical and chemical sectors. Our specialized services will help your company with the sustenance it requires. We are a leading MEP Consulting Firm in Mumbai with numerous successful projects.